Molecular dynamics of glycerol and glycerol-trehalose bioprotectant solutions nanoconfined in porous silicon.

نویسندگان

  • R Busselez
  • R Lefort
  • M Guendouz
  • B Frick
  • O Merdrignac-Conanec
  • D Morineau
چکیده

Glycerol and trehalose-glycerol binary solutions are glass-forming liquids with remarkable bioprotectant properties. Incoherent quasielastic neutron scattering is used to reveal the different effects of nanoconfinement and addition of trehalose on the molecular dynamics in the normal liquid and supercooled liquid phases, on a nanosecond time scale. Confinement has been realized in straight channels of diameter D=8 nm formed by porous silicon. It leads to a faster and more inhomogeneous relaxation dynamics deep in the liquid phase. This confinement effect remains at lower temperature where it affects the glassy dynamics. The glass transitions of the confined systems are shifted to low temperature with respect to the bulk ones. Adding trehalose tends to slow down the overall glassy dynamics and increases the nonexponential character of the structural relaxation. Unprecedented results are obtained for the binary bioprotectant solution, which exhibits an extremely non-Debye relaxation dynamics as a result of the combination of the effects of confinement and mixing of two constituents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bioprotectant glassforming solutions confined in porous silicon nanocapillaries

Glycerol and trehalose-glycerol binary solutions are glass-forming liquids with remarkable bioprotectant properties. In this paper, we address the effects of confining of these solutions in straight channels of diameter D=8 nm formed by porous silicon. Neutron diffraction and incoherent quasielastic neutron scattering are used to reveal the different effects of nanoconfinement and addition of t...

متن کامل

Role of hydrogen bonds in the fast dynamics of binary glasses of trehalose and glycerol: a molecular dynamics simulation study.

Trehalose-glycerol mixtures are known to be effective in the long time preservation of proteins. However, the microscopic mechanism of their effective preservation abilities remains unclear. In this article we present a molecular dynamics simulation study of the short time, less than 1 ns, dynamics of four trehalose-glycerol mixtures at temperatures below the glass transition temperature. We fo...

متن کامل

Protein and solvent dynamics: how strongly are they coupled?

Analysis of Raman and neutron scattering spectra of lysozyme demonstrates that the protein dynamics follow the dynamics of the solvents glycerol and trehalose over the entire temperature range measured 100-350 K. The protein's fast conformational fluctuations and low-frequency vibrations and their temperature variations are very sensitive to behavior of the solvents. Our results give insight in...

متن کامل

Effect of carbohydrate type and concentration on polyhydroxy alcohol and trehalose content of conidia of three entornopathogenic fungi

Biotechnology Centre, Cranf ield University, Cranfield, Bedford MK43 OAL, UK The entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae and Paecilomyces farinosus were cultured on solid agar media containing different carbohydrate components (glycerol, glucose, trehalose or starch) at concentrations of < 142.7 g added carbon I-1 for 30 d at 25 "C. The water activity (a, ) of the medi...

متن کامل

Dynamics of hemoglobin in human erythrocytes and in solution: influence of viscosity studied by ultrafast vibrational echo experiments.

Ultrafast spectrally resolved stimulated vibrational echo experiments are used to measure the vibrational dephasing of the CO stretching mode of hemoglobin-CO (HbCO) inside living human erythrocytes (red blood cells), in liquid solutions, and in a glassy matrix. A method is presented to overcome the adverse impact on the vibrational echo signal from the strong light scattering caused by the cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 130 21  شماره 

صفحات  -

تاریخ انتشار 2009